Contribution to the study of univariate and multivariate risk processes

Stéphane Loisel

Laboratoire de Sciences Actuarielle et Financière
Université Lyon 1, France
PhD directors: Christian Mazza (Genève) and Daniel Serant (Lyon)

stephane.loisel@univ-lyon1.fr
Historical model: for unidimensional risk processes $R_t = u + X_t$,

- with initial reserve u
- and with $X_t = ct - S_t$, where
 - $c > 0$ is the premium income rate,
 - $S_t = \sum_{i=1}^{N(t)} W_i$,
 - the W_i are i.i.d. nonnegative random variables, independent from $(N(t))_{t \geq 0}$,
 - with the convention that the sum is zero if $N(t) = 0$.

Probability of ruin: $\psi(u) = P(\exists t \geq 0, R_t < 0)$.
Two lines of business: classical, 1-dimensional surplus process (black), 2-dimensional process (1 for each line of business, blue and red).

\[u = u_1 + u_2 \]
Introduction

3 main directions:

- How to model the stochastic dependence between the K lines of business?
- Which ruin concept?
- Within finite or infinite time?
- Ruin or severity of ruin?
- Optimal initial reserve allocation?
- How to measure risk and profit (dividends)?
PhD thesis based on 5 papers:

Structure of the exposé

Contribution to the study of univariate and multivariate risk processes

- Risk and profit measures for univariate risk processes
- A general optimal reserve allocation strategy
- A multidimensional risk model
- Time to ruin, dividends and insolvency penalties
Risk and profit measures for univariate risk processes

- A general optimal reserve allocation strategy
- A multidimensional risk model
- Time to ruin, dividends and insolvency penalties
• the time to ruin $T_u = \inf\{t > 0, u + X_t < 0\}$,

• the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,

• the time in the red (below 0) from the first ruin to the first time of recovery $T_u' - T_u$, where

$$T_u' = \inf\{t > T_u, u + X_t = 0\},$$

• the maximal ruin severity $(\inf_{t>0} u + X_t)$,

• the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T_u'} |u + X_t| \, dt$,

• the total time in the red $\tau(u) = \int_0^{+\infty} 1\{u + X_t < 0\} \, dt$.
Risk measures

- the time to ruin $T_u = \inf \{ t > 0, u + X_t < 0 \}$,
- the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,
- the time in the red (below 0) from the first ruin to the first time of recovery $T'_u - T_u$, where
 \[T'_u = \inf \{ t > T_u, u + X_t = 0 \}, \]
- the maximal ruin severity $(\inf_{t>0} u + X_t)$,
- the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T'_u} |u + X_t| \, dt$,
- the total time in the red $\tau(u) = \int_0^{+\infty} \mathbf{1}_{\{u+X_t<0\}} \, dt$.
Risk measures

- the time to ruin $T_u = \inf \{ t > 0, u + X_t < 0 \}$,
- the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,
- the time in the red (below 0) from the first ruin to the first time of recovery $T'_{u} - T_u$, where
 \[T'_{u} = \inf \{ t > T_u, u + X_t = 0 \}, \]
- the maximal ruin severity $(\inf_{t>0} u + X_t)$,
- the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T'_{u}} |u + X_t| \, dt$, ...
- the total time in the red $\tau(u) = \int_{0}^{+\infty} \mathbb{1}_{\{u + X_t < 0\}} \, dt$.
• the time to ruin $T_u = \inf \{ t > 0, \ u + X_t < 0 \}$,

• the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,

• the time in the red (below 0) from the first ruin to the first time of recovery $T'_u - T_u$, where

\[
T'_u = \inf \{ t > T_u, \ u + X_t = 0 \},
\]

• the maximal ruin severity $(\inf_{t>0} u + X_t)$,

• the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T'_u} |u + X_t| dt$, ...

• the total time in the red $\tau(u) = \int_0^{+\infty} 1\{u+X_t<0\} dt$.

Stéphane Loisel, 12/2004
Risk measures

- the time to ruin $T_u = \inf\{t > 0, u + X_t < 0\}$,
- the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,
- the time in the red (below 0) from the first ruin to the first time of recovery $T'_u - T_u$, where
 \[T'_u = \inf\{t > T_u, u + X_t = 0\}, \]
- the maximal ruin severity $(\inf_{t > 0} u + X_t)$,
- the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T'_u} |u + X_t| dt$, ...
- the total time in the red $\tau(u) = \int_0^{+\infty} 1\{u + X_t < 0\} dt$.

Stéphane Loisel, 12/2004
- the time to ruin $T_u = \inf\{t > 0, u + X_t < 0\}$,
- the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,
- the time in the red (below 0) from the first ruin to the first time of recovery $T'_u - T_u$, where
 $$T'_u = \inf\{t > T_u, u + X_t = 0\},$$
- the maximal ruin severity $(\inf_{t>0} u + X_t)$,
- the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T'_u} |u + X_t| dt,$...
- the total time in the red $\tau(u) = \int_0^{+\infty} 1\{u + X_t < 0\} dt$.
Risk measures

- the time to ruin $T_u = \inf \{ t > 0, u + X_t < 0 \}$,
- the severity of ruin $|u + X_{T_u}|$, or the couple $(T_u, |u + X_{T_u}|)$,
- the time in the red (below 0) from the first ruin to the first time of recovery $T'_u - T_u$, where
 \[
 T'_u = \inf \{ t > T_u, u + X_t = 0 \},
 \]
- the maximal ruin severity $(\inf_{t>0} u + X_t)$,
- the aggregate severity of ruin until recovery $J(u) = \int_{T_u}^{T'_u} |u + X_t| \, dt,$...
- the total time in the red $\tau(u) = \int_0^{\infty} 1\{u + X_t < 0\} \, dt$.
Consider risk measures based on some fixed time interval \([0, T]\)
(T may be infinite).

Simple penalty function (expected penalty to pay due to insolvency until time horizon \(T\)):

\[
\mathbb{E} \left(I_T(u) \right) = \mathbb{E} \left(\int_0^T 1_{\{u+X_t<0\}} |u + X_t| \, dt \right).
\]

Note that the probability \(\mathbb{P} \left(I_T(u) = 0 \right)\) is the probability of non ruin within finite time \(T\).
Consider risk measures based on some fixed time interval \([0, T]\) (\(T\) may be infinite).

Simple penalty function (expected penalty to pay due to insolvency until time horizon \(T\)):

\[
\mathbb{E} \left(I_T(u) \right) = \mathbb{E} \left(\int_0^T 1_{\{u+X_t<0\}} |u + X_t| \, dt \right).
\]

Note that the probability \(\mathbb{P} \left(I_T(u) = 0 \right)\) is the probability of non ruin within finite time \(T\).
Consider risk measures based on some fixed time interval $[0, T]$ (T may be infinite).

Simple penalty function (expected penalty to pay due to insolvency until time horizon T):

$$
\mathbb{E}(I_T(u)) = \mathbb{E}\left(\int_0^T 1_{\{u+X_t<0\}}|u+X_t|\,dt\right).
$$

Note that the probability $\mathbb{P}(I_T(u) = 0)$ is the probability of non ruin within finite time T.
Problem: in the compound-Poisson risk model, with claim amounts taking values in \mathbb{N}, compute the probability of non ruin before finite time T defined by

$$\phi(u, T) = \mathbb{P} \left(\forall t \in [0, T], \ R_t \geq 0 \right).$$

The Picard-Lefèvre formula is based on generalized Appell polynomials. The Seal-type formula is based on a lemma from Tákacs and on sample path properties.

Proof of the Picard-Lefèvre formula based on sample path properties, and class of new formulae (Rullière and L., 2004a)

Drawback: very hard to generalize the Seal-type formula in a multi-risks model.
The two formulae may be written with the notation $h_j(\tau) = \tilde{P}[S_{\tau/c} = j]$:

$$\phi_{PL}(u, t) = \sum_{j=0}^{u} \left[h_j(t) + h_j(j-u) \sum_{i=u+1}^{u+n} h_{i-j}(u+t-j) \frac{u+t-i}{u+t-j} \right]$$

$$\phi_0(u, t) = \sum_{j=0}^{u+n} h_j(t) - \sum_{k=1}^{n} h_{u+k}(k) \sum_{l=0}^{n-k} h_{n-k-l}(t-k) \frac{t-k-l}{t-k}$$

The equivalence may be proved thanks to pseudo-compound Poisson distributions and the following result:

Lemma 1 (Rullière and L., 2004a) For $t \in \mathbb{N}^*$, $x \in \mathbb{N}$ and for all $z \in \mathbb{Z}$, $z > x - t$,

$$\mathbb{P}(S(t) = x) = \sum_{j=0}^{x} \mathbb{P}(S(z+t-j) = x-j) \tilde{P}(S(j-z) = j) \frac{z+t-x}{z+t-j}. \quad (1)$$
From an economical point of view, it seems more consistent to consider

\[
\mathbb{E} I_{g,h}(u) = \mathbb{E} \left(\int_0^T \left(1_{\{u + X_t \geq 0\}} g(|u + X_t|) - 1_{\{u + X_t \leq 0\}} h(|u + X_t|) \right) dt \right)
\]

- \(0 \leq g \leq h\)
- \(g\) corresponds to a reward function for positive reserves,
- and \(h\) is a penalty function in case of insolvency.

These risk measures may be differentiated with respect to the initial reserve \(u\).

Fubini’s theorem.
Other profit indicator: dividends paid until ruin.

Horizontal barrier strategy for dividend payment (at level b):
modified surplus process $U_b(t)$ (red) and dividend process $L(t)$ (blue).

$P(L(T_u) > 0)$ is the probability to reach $u + (b - u)$ from u before ruin

- \rightarrow win first probability (Rullière and L., 2004b): $WF(u, v) = P(T_u > T_{uw})$,
- where $T_u = \inf \{t, R_t < 0\}$ and $T_{uw} = \inf \{t, R_t \geq u + v\}$.
- Property: For $v, w \geq 0$, $WF(u, v + w) = WF(u, v)WF(u + v, w)$.
\[
\Theta = \sup \{ R_t, t \leq T_0 \mid R_0 = 0 \}.
\]

For \(u, v \geq 0 \),
\[
WF(u, v) = \mathbb{P}(\Theta \geq u + v \mid \Theta \geq u).
\]

Hazard rate of \(\Theta \):
\[
\mu_u(v) = -\frac{\partial}{\partial v} \ln WF(u, v).
\]

This rate is finite, only depends on \(u + v \), and may be written \(\mu_u(v) = \mu_{u+v} \).

Algorithm to compute the hazard rate function of \(\Theta \) and its derivatives. Efficient way to obtain \(WF(u, v) \) and its derivatives numerically (Rullière and L., 2004b).
Contribution to the study of univariate and multivariate risk processes

- Risk and profit measures for univariate risk processes
- A general optimal reserve allocation strategy
- A multidimensional risk model
- Time to ruin, dividends and insolvency penalties
Differentiation theorems

\[I(u) = \int_0^T 1_{\{u + X_t < 0\}} |u + X_t| \, dt \]
Th. (L., 2004b):

Let \((X_t)_{t\in[0,T]}\) be a stochastic process with almost surely time-integrable sample paths. For \(u \in \mathbb{R}\), denote by \(\tau_0(u)\) the time spent in zero by the process \(u + X_t\):

\[
\tau_0(u) = \int_0^T 1_{\{u + X_t = 0\}} \, dt.
\]

Let \(f\) be defined by \(f(u) = \mathbb{E}(I_T(u))\) for \(u \in \mathbb{R}\), where

\[
I_T(u) = \left(\int_0^T 1_{\{u + X_t < 0\}} |u + X_t| \, dt \right).
\]
Th. (L., 2004b):

Let \((X_t)_{t \in [0,T]}\) be a stochastic process with almost surely time-integrable sample paths. For \(u \in \mathbb{R}\), denote by \(\tau_0(u)\) the time spent in zero by the process \(u + X_t\):

\[
\tau_0(u) = \int_0^T 1\{u+X_t=0\} \, dt.
\]

Let \(f\) be defined by \(f(u) = \mathbb{E}(I_T(u))\) for \(u \in \mathbb{R}\), where

\[
I_T(u) = \left(\int_0^T 1\{u+X_t<0\} |u+X_t| \, dt \right).
\]

- For \(u \in \mathbb{R}\), if \(\mathbb{E}\tau_0(u) = 0\), then \(f\) is differentiable at \(u\), and \(f'(u) = -\mathbb{E}\tau(u)\).
Th. (L., 2004b): Let $X_t = ct - S_t$, where S_t is a jump process satisfying hypothesis (H1): S_t has a finite expected number of nonnegative jumps in every finite interval, and for each t, the distribution of S_t is absolutely continuous. For example, S_t might be a compound Poisson process with a continuous jump size distribution. Define h by $h(u) = \mathbb{E}(\tau(u))$ for $u \in \mathbb{R}$. h is differentiable on \mathbb{R}^*_+, and for $u > 0$,

$$h'(u) = -\frac{1}{c} \mathbb{E}N^0(u),$$

where $N^0(u) = \text{Card}\{t \in [0, T], \ u + ct - S_t = 0\}$.

Th. (L., 2004b): Let \(X_t = ct - S_t \), where \(S_t \) is a jump process satisfying hypothesis (H1): \(S_t \) has a finite expected number of nonnegative jumps in every finite interval, and for each \(t \), the distribution of \(S_t \) is absolutely continuous. For example, \(S_t \) might be a compound Poisson process with a continuous jump size distribution. Define \(h \) by
\[
h(u) = \mathbb{E}(\tau(u)) \quad \text{for} \quad u \in \mathbb{R}.
\]
h is differentiable on \(\mathbb{R}^*_+ \), and for \(u > 0 \),
\[
h'(u) = -\frac{1}{c} \mathbb{E} N^0(u),
\]
where \(N^0(u) = \text{Card} \left(\{ t \in [0, T], \ u + ct - S_t = 0 \} \right) \).

This remains valid with \(T = +\infty \) if \(X_t \) has a positive drift and \(\tau(u) \) is integrable. In the compound Poisson case, for \(u \geq 0 \),
\[
h'(u) = -\frac{1}{c} \frac{1}{1 - \psi(0)} \psi(u)
\].
Th. (L., 2004b): Let \(X_t = ct - S_t \), where \(S_t \) is a jump process satisfying hypothesis (H1): \(S_t \) has a finite expected number of nonnegative jumps in every finite interval, and for each \(t \), the distribution of \(S_t \) is absolutely continuous. For example, \(S_t \) might be a compound Poisson process with a continuous jump size distribution. Define \(h \) by

\[
h(u) = \mathbb{E}(\tau(u)) \text{ for } u \in \mathbb{R}.
\]

\(h \) is differentiable on \(\mathbb{R}^*_+ \), and for \(u > 0 \),

\[
h'(u) = -\left\{ \frac{1}{c} \mathbb{E}N_0^0(u) \right\},
\]

where \(N_0^0(u) = \text{Card} (\{ t \in [0, T], \quad u + ct - S_t = 0 \}) \).

This remains valid with \(T = +\infty \) if \(X_t \) has a positive drift and \(\tau(u) \) is integrable. In the compound Poisson case, for \(u \geq 0 \),

\[
h'(u) = -\left\{ \frac{1}{c} \frac{1}{1 - \psi(0)} \psi(u) \right\}.
\]

\(\mathbb{E}I_T(.) \) is thus well strictly convex, which will be very important for minimization.
Theorem: In the Poisson-Exponential$(1/\mu)$ case, $\psi(u) = \frac{1 - \mu R}{\mu R} e^{-R u}$, with $R = \frac{1}{\mu} \left(1 - \frac{\lambda \mu}{c}\right)$. Hence, for $T = +\infty$,

\[\mathbb{E}\tau(u) = \frac{1 - \mu R}{c \mu R^2} e^{-R u} \quad \text{Gerber, Dos Reis (1993)} \]

and

\[\mathbb{E}I_\infty(u) = \frac{1 - \mu R}{c \mu R^3} e^{-R u} \quad \text{L. (2004b)} \]

Proof: Integration of the well-known formula for $\psi(u)$. The considered functions tend to 0 as $u \to +\infty$.

It is possible to derive $\mathbb{E}I_\infty(u)$ explicitly for Γ and phase-type-distributed claim amounts.
Th. (L., 2004b): Let \(g, h \) be two convex or concave functions in \(C^1(\mathbb{R}^+, \mathbb{R}^+) \), such that for \(x \geq 0, g(x) \geq g(0) \) and \(h(x) \geq h(0) \). Let \(X_t \) be a stochastic process such that \(t \to g(u + X_t) \) and \(t \to h(u + X_t) \) are almost surely integrable on \([0, T]\). Let \(I_g^+ \) be the function from \(\mathbb{R} \) into the space of nonnegative random variables, and defined by

\[
I_g^+ (u) = \int_0^T \1_{\{u + X_t \geq 0\}} g(u + X_t) \, dt
\]

for \(u \geq 0 \) and let \(f(.) = \mathbb{E}I_g^+(.) - \mathbb{E}I_h(.) \). Define also

\[
L_T(0) = \lim_{\varepsilon \downarrow 0} \left(\frac{1}{2\varepsilon} \int_0^T \1_{\{\|u + X_t\| < \varepsilon\}} \, dt \right).
\]

If, for \(u \in \mathbb{R}, \quad \mathbb{E}I_g^+(u), \quad \mathbb{E}I_h(u), \quad \mathbb{E}I_g'(u), \quad \mathbb{E}I_h'(u) < +\infty, \)
and if \(\mathbb{E}T_0(u) = 0 \), then \(f \) is differentiable on \(\mathbb{R}_+^* \), and for \(u > 0 \),

\[
f'(u) = \mathbb{E}I_g'(u) - \mathbb{E}I_h'(u) - (g(0) + h(0))\mathbb{E}L_T(0)
\]
What has to be minimized is

$$A(u_1,\ldots,u_K) = \sum_{k=1}^{K} \mathbb{E}I^k_T(u_k)$$

under the constraint $u_1 + \cdots + u_K = u$, where

$$\mathbb{E}I^k_T(u_k) = \mathbb{E} \left[\int_0^T |R^k_t| 1\{R^k_t < 0\} \, dt \right]$$

with $R^k_t = u_k + X^k_t$
What has to be minimized is

\[A(u_1, \ldots, u_K) = \sum_{k=1}^{K} \mathbb{E} I_T^k(u_k) \]

under the constraint \(u_1 + \cdots + u_K = u \), where

\[\mathbb{E} I_T^k(u_k) = \mathbb{E} \left[\int_0^T |R_t^k| 1_{\{R_t^k < 0\}} dt \right] \]

with \(R_t^k = u_k + X_t^k \)

This does not depend on the dependence structure.
What has to be minimized is

\[A(u_1, \ldots, u_K) = \sum_{k=1}^{K} \mathbb{E} I^k_T(u_k) \]

under the constraint \(u_1 + \cdots + u_K = u \), where

\[\mathbb{E} I^k_T(u_k) = \mathbb{E} \left[\int_0^T \left| R^k_t \right| 1_{\{R^k_t < 0\}} dt \right] \]

with \(R^k_t = u_k + X^k_t \)

This does not depend on the dependence structure.

From previous differentiation theorems, \(A \) is strictly convex. On the compact space

\[S = \{(u_1, \ldots, u_K) \in (\mathbb{R}^+)^K, \; u_1 + \cdots + u_K = u\}, \]

\(A \) admits a unique minimum.
Lagrange multipliers \(\rightarrow\) optimal allocation:

there is a subset \(J \subset [1, K]\) such that

- for \(j \notin J\), \(u_j = 0\),
- and for \(j, k \in J\), \(\mathbb{E} \tau_j = \mathbb{E} \tau_k\).
Lagrange multipliers \(\rightarrow \) optimal allocation:

there is a subset \(J \subset [1, K] \) such that

- for \(j \notin J \), \(u_j = 0 \),
- and for \(j, k \in J \), \(E \tau_j = E \tau_k \).

In the Poisson-Exponential(\(\frac{1}{\mu} \)) case, recall that

\[
E I_u = 1 - \frac{\mu R}{c\mu R^3} e^{-Ru}.
\]

Consider a two-line model, with the following parameters:

\(\mu_1 = \mu_2 = 1 \), \(c_1 = c_2 = 1 \), \(R_2 = 0.4 \) and \(u = 10 \).

Three values of \(R_1 \) \(\rightarrow \) different optimal allocation strategies.
Figure 4: Graph of $A(x, 10 - x)$.
When $R_1 = 0.5 > R_2$,
line of business 1 is safer than line 2.
→ $u_1 < u_2$.
The optimal allocation is about
$(u_1 = 3.5, \ u_2 = 6.5.)$

Figure 5: Graph of $A(x, 10 - x)$.
When $R_1 = 0.08 < R_2$,
line of business 1 is much riskier than line 2.
→ $u_1 = u = 10$ and $u_2 = 0$.
Transfer of the whole reserve to line 1.
Contributions to the study of univariate and multivariate risk processes

- Risk and profit measures for univariate risk processes
- A general optimal reserve allocation strategy
- A multidimensional risk model
- Time to ruin, dividends and insolvency penalties
 – in discrete time
 – with independent increments
 – increments follow any distribution of \mathbb{Z}^K or \mathbb{R}^K.

• In our model, two main kinds of phenomena:
 – Claims for different lines of business may come from a common event:
 simultaneous jumps for the multivariate process \rightarrow Poisson common shock model.
 – Markovian environment:
 Modulation by a Markov process which describes the evolution of the state of the environment (Asmussen, 1989).
n states of the environment and K lines of business

- State of the environment \rightarrow Markov process $J(t)$
 - with initial distribution π_0
 - and rate transition matrix Q.
- Claim amounts: for $1 \leq i \leq n$, sequence of i.i.d. random vectors $(W_i^m)_{m \geq 1}$
 - taking values in $(\mathbb{R}^+)^K$, with distribution function F_{W_i}
 - such that if a claim hits line k, amount for line k exponentially distributed,
 - and independent from a Poisson process $N_i^i(t)$ with parameter λ^i.
- Define the n independent K-dimensional Lévy processes
 \[
 X^i(t) = c^i t - \sum_{m=1}^{N_i^i(t)} W^i_m
 \]
Then, define \(X(t) = (X_1(t), \ldots, X_K(t)) \) as follows:

let \(T_p \) be the instant of the \(p^{th} \) jump of the process \(J_t \), and

\[
\forall k \leq K, \quad X(t) - X(0) = \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X_i(T_p) - X_i(T_{p-1})) \mathbb{1}_{\{J_{T_p-1} = i, T_p \leq t\}} \\
+ \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X_i(t) - X_i(T_{p-1})) \mathbb{1}_{\{J_{T_p-1} = i, T_{p-1} \leq t < T_p\}}.
\]
Then, define $X(t) = (X_1(t), \ldots, X_K(t))$ as follows:

let T_p be the instant of the p^{th} jump of the process J_t, and

$$
\forall k \leq K, \quad X(t) - X(0) = \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X^i(T_p) - X^i(T_{p-1})) 1\{J_{T_p-1} = i, T_p \leq t\}
$$

$$
+ \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X^i(t) - X^i(T_{p-1})) 1\{J_{T_p-1} = i, T_{p-1} \leq t < T_p\}.
$$
Then, define \(X(t) = (X_1(t), \ldots, X_K(t)) \) as follows:

let \(T_p \) be the instant of the \(p^{th} \) jump of the process \(J_t \), and

\[
\forall k \leq K, \quad X(t) - X(0) = \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X_i(T_p) - X_i(T_{p-1}))1\{J_{T_p-1} = i, T_p \leq t\}
\]

\[
+ \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X_i(t) - X_i(T_{p-1}))1\{J_{T_{p-1}} = i, T_{p-1} \leq t < T_p\}.
\]
Then, define \(X(t) = (X_1(t), \ldots, X_K(t)) \) as follows:

let \(T_p \) be the instant of the \(p^{th} \) jump of the process \(J_t \), and

\[
\forall k \leq K, \quad X(t) - X(0) = \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X^i(T_p) - X^i(T_{p-1}))1\{J_{T_{p-1}} = i, T_p \leq t\} + \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X^i(t) - X^i(T_{p-1}))1\{J_{T_{p-1}} = i, T_{p-1} \leq t < T_p\}.
\]
Then, define \(X(t) = (X_1(t), \ldots, X_K(t)) \) as follows:

let \(T_p \) be the instant of the \(p^{th} \) jump of the process \(J_t \), and

\[
\forall k \leq K, \quad X(t) - X(0) = \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X^i(T_p) - X^i(T_{p-1})) 1\{J_{T_{p-1}} = i, T_p \leq t\}
\]

\[
+ \sum_{p \geq 1} \sum_{1 \leq i \leq n} (X^i(t) - X^i(T_{p-1})) 1\{J_{T_{p-1}} = i, T_{p-1} \leq t < T_p\}.
\]
Dependence structure between risks

Theorem 1

\[M'(t, \alpha) = e^{-\langle \alpha, X(t) \rangle} \tilde{1}_t e^{-F(\alpha_1, \ldots, \alpha_K) t} \]

is a \(n \)-dimensional martingale (\(n \) is the environment state space size) for all \(\alpha \in \mathbb{C}^K \) such that the \(\phi_k^i(\alpha_k) \) all exist, and for all distribution of \((X(0), J_0) \), where

\[F(\alpha_1, \ldots, \alpha_K) = Q - \text{diag}(\phi^1(\alpha_1, \ldots, \alpha_K), \ldots, \phi^n(\alpha_1, \ldots, \alpha_K)). \]

If \(h(\alpha_1, \ldots, \alpha_K) \) is a right eigenvector of \(F(\alpha_1, \ldots, \alpha_K) \) with eigenvalue \(\lambda(\alpha_1, \ldots, \alpha_K) \), then

\[N'(t, \alpha) = e^{-\langle \alpha, X(t) \rangle} e^{-\lambda(\alpha_1, \ldots, \alpha_K) t} h J_t (\alpha_1, \ldots, \alpha_K) \]

is a martingale.

- not convenient to apply Doob’s optimal stopping theorem directly.
- Discretize time and space
 - Compute numerically finite-time ruin probabilities (L., 2004a).
 - Ruin: the multivariate claim process enters an insolvency region.
 - Algorithm involves generalized Appell functionals (Picard et al, 2003).
Contribution to the study of univariate and multivariate risk processes

- Risk and profit measures for univariate risk processes
- A general optimal reserve allocation strategy
- A multidimensional risk model
- Time to ruin, dividends and insolvency penalties
• The model we propose takes into account dependence between lines of business both for
the multivariate claim process, and for the premium incomes and dividends.

• We consider that line of business 1 behaves slightly differently from the other ones (it
might correspond for example to a main company with $K - 1$ subcompanies).

• Dependence between claim arrivals and amounts of the K lines of business
 ➔Previous model with common shocks in a Markovian environment.

• For each line $k \geq 1$, upper barrier b_k ➔dividends.

• Financial interactions: positions of subcompanies influence the premium income rate of
 line 1.

• Cause: the surplus of the main company may be partly invested in some subcompanies.
Surplus process of the main company (line 1) and of one subcompany (line 2): the drift for line 1 is a function of the surplus of line 2.
Surplus process of the main company (line 1) and of one subcompany (line 2): the drift for line 1 is a function of the surplus of line 2.
Surplus process of the main company (line 1) and of one subcompany (line 2): the drift for line 1 is a function of the surplus of line 2.
Surplus process of the main company (line 1) and of one subcompany (line 2): the drift for line 1 is a function of the surplus of line 2.
Typical questions that arise are:

• what proportion of the excess of the surplus of line of business 1 is in average lost for the shareholders due to the insolvency of some other lines of business? This represents for the shareholders a loss of dividends that they would not have undergone if the subcompanies were completely separate.

• Does the expected time to ruin of a line of business increase or decrease due to the possible financial support or penalty coming from the impact of the surpluses of other lines of business?

• What is the probability for a line of business to get recovered after its ruin?
Horizontal barrier strategy for dividend payment (at level b):
modified surplus process $U_b(t)$ (red) and dividend process $L(t)$ (blue).

$$Z(t) = b - U_b(t).$$

\[M(t, \alpha) = \int_{0}^{t} e^{\alpha Z(s)} \mathbf{1}_{J(s)} ds \mathbf{K}(\alpha) + e^{\alpha Z(0)} \mathbf{1}_{J(0)} - e^{\alpha Z(t)} \mathbf{1}_{J(t)} + \alpha \int_{0}^{t} \mathbf{1}_{J(s)} dL(s) \]

(2)

is a \(n \)-dimensional martingale for all \(\alpha \in \mathbb{C} \) such that the \(\phi^j_k(\alpha) \) exist and for all distributions of \((X(0), J_0) \).

Note that \(\det (\mathbf{K}(\alpha)) \) may be written as a quotient of two polynomials where the numerator is of degree \(2n \). Assume that the numerator has \(2n \) distinct roots \(\alpha_1, \ldots, \alpha_{2n} \). Let \(h^j(\alpha_j) \) be a column vector such that \(\mathbf{K}(\alpha_j) h^j(\alpha_j) = 0 \). By multiplying (2) by \(h^j(\alpha_j) \), we get the following system of \(2n \) equations for the \(p_j = \mathbb{P}(J_\tau = j) \) and \(l_j = \int_{0}^{\tau} 1\{J_s = j\} ds \):

\[\mathbb{E} \left[e^{\alpha_j Z(0)} h^j_{J(0)}(\alpha_j) \right] - \sum_{i=1}^{n} p_i e^{\alpha_j b} \frac{1}{1 - \alpha_j \mu_i} h^j_i(\alpha_j) + \alpha_j \sum_{i=1}^{n} l_i h^j_i(\alpha_j) = 0. \]

(3)
Outline of the method:

• Discretize space for the $K - 1$ subcompanies

• Incorporate the original environment and the position of the $K - 1$ subcompanies to get a new environment.

• Apply results of Frostig (2004) (modified to allow jumps at state change instants) to line 1 in the new environment.

• Use an analogue of Schilder’s theorem for Poisson processes to have almost sure convergence of the sample paths (for the topology of uniform convergence) on all $[0, T]$.

• The time to ruin is less than the time to ruin in the most favorable state, which is integrable.

• Conclude with the dominated convergence theorem.
For line of business $k \geq 2$,
original sample path (black)
and approximated sample path (red) to incorporate the position of line k in the new
environment process.
For line of business $k \geq 2$, original sample path (black) and approximated sample path (red) to incorporate the position of line k in the new environment process.
Conclusion and perspectives

Contribution to the study of univariate and multivariate risk processes

- Risk and profit measures for univariate risk processes
- A general optimal reserve allocation strategy
- A multidimensional risk model
- Time to ruin, dividends and insolvency penalties
- Perspectives
Perspectives:

- More numerical analysis.
- Bound the approximation error in the last model at some fixed step.
- Optimal b_k, u_k,
- Further questions about the impact of dependence,
- Link with credit risk theory.
- General case with drifts depending on the positions of all lines of business.
- Take investment into account.
- Estimation of parameters.
Perspectives:

- More numerical analysis.
- Bound the approximation error in the last model at some fixed step.
- Optimal $b_k, u_k,...$
- Further questions about the impact of dependence,...
- Link with credit risk theory.
- General case with drifts depending on the positions of all lines of business.
- Take investment into account.
- Estimation of parameters.

http://isfaserveur.univ-lyon1.fr/~stephane.loisel/phd.html